

X Международная научно-практическая конференция «Опоры и фундаменты для ВЛ: технологии проектирования и строительства»

Организаторы конференции: Международная Ассоциация Фундаментостроителей и НИЛКЭС ООО «ПО Энергожелезобетонинвест»

Тема доклада:

Изолирующие траверсы на ВЛ 35-220 кВ. Перспективные возможности снижения материалоемкости ВЛ. Восстановление габаритов до земли и пересекаемых объектов.

Докладчик:

Хайрутдинова Марина Вадимовна, Заместитель генерального директора по проектной деятельности ООО «ФОРЭНЕРГО-ИНЖИНИРИНГ»

г. Санкт-Петербург, 2023 г.

СПЕЦИАЛИЗАЦИЯ

Координация научно-технической и производственной деятельности ведущих предприятий арматурно-изоляторной отрасли России, таких как: «МЗВА-ЧЭМЗ», «ИНСТА», «ЮМЭК», «ФОРЭНЕРГО-ИНЖИНИРИНГ» и др.

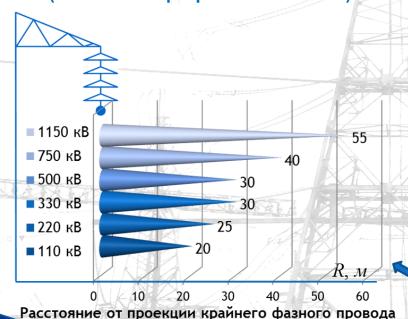
Объединение специализируется на разработке и производстве оборудования и материалов для строительства линий электропередачи и подстанций – изоляторов, линейной арматуры и ОПН для всех классов напряжения.

Вся серийно выпускаемая продукция аттестована в ПАО «Россети»

^{*} выручка по итогам 2021 года

^{**} Челябинская и Нижегородская области, Пермский край

Целесообразность строительства компактных ВЛ:


- 1. Стесненные условия строительства ВЛ.
- Прохождение трассы ВЛ по особо охраняемым природным территориям, в условиях городской застройки, по территории лесов первой группы, в зеленых зонах и т.д.
- **2. Реконструкция ВЛ** с переводом на более высокий класс напряжения, а также реконструкция для устранения негабарита.
- **3. Достигаемый экономический эффект.** В классе напряжений 35-220 кВ строительство компактных ВЛ дешевле, чем строительство ВЛ в традиционных габаритах.

Особенно это проявляется при строительстве ВЛ на земле с высокой стоимостью, где значительно возрастает плата за площадь отчуждаемой и охранной территории.

Площадь отчуждаемых земельных угодий

Охранные зоны ВЛ (*L*_{O3}) – территории вдоль трасс ВЛ, в которых напряженность электрического поля превышает 1 кВ/м (ПП РФ от 24 февраля 2009 г. №160)

на землю

Коэффициент эффективности использования отчуждаемых земель

$$K_{_3} = \frac{P_{_{Ham}}}{L_{_{II}}} (MBm/M)$$

 $P_{{\scriptscriptstyle \! Ham}}$ - величина натуральной мощности линии (МВт);

 $L_{\scriptscriptstyle \Pi}$ - ширина полосы отчуждаемых земель (м)

 $K_{\mathfrak{z}} = \max \, npu \, y$ словии $D \to \min u \, L_{\scriptscriptstyle \Pi} = L_{\scriptscriptstyle O3}$

D - расстояние между крайними фазами (м) $L_{{\cal O}^3}$ - ширина охранной зоны ВЛ (м)

$$L_{O3} = 2 \cdot R + D$$

R = const для заданного класса напряжения

По материалам доклада д.т.н. Виталия Постолати

4. Повышение пропускной способности ВЛ.

Конструкция компактных ВЛ позволяет повысить пропускную способность ВЛ.

Основные параметры ВЛ

Пропускная способность линии (МВт)

$$P = \frac{|U_1||U_2|}{Z_{\epsilon} \sin \alpha_0 l} \sin \delta$$

- $U_1, U_2^{}$ напряжение в начале и в конце ВЛ соответственно (кВ);
- Z волновое сопротивление ВЛ (Ом);
- коэффициент изменения фазы (угол поворота вектора напряжения при распространении волны напряжения вдоль линии, эл. град/км);
- длина линии (км);
- $lpha_0 l$ волновая длина линии (электрических градусов);
- δ угол сдвига напряжений начала и конца линии электропередачи (градусов)

Волновое сопротивление (Ом)

$$Z_{e} = \sqrt{\frac{r_{0} + jx_{0}}{g_{0} + jb_{0}}}$$

- r_0 удельное активное сопротивление проводов (Ом/км)
- g_{0} удельная активная поперечная проводимость (См/км)
- $x_0 = \omega L_0$ удельное продольное индуктивное сопротивление фаз линии (Ом/км)
- $b_0 = \omega C_0$ удельная емкостная проводимость (См/км)

Натуральная мощность (МВт) – пропускная способность линии при $sin\alpha_0 l = 1$ u sin $\delta = 1$

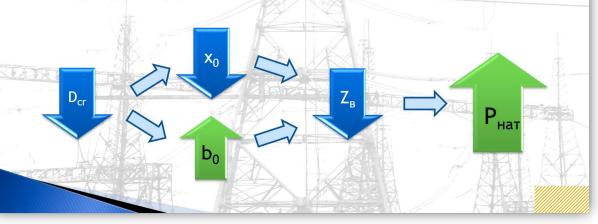
$$P_{\text{\tiny Ham}} = \frac{|U_1||U_2|}{Z} = \frac{U^2}{Z}$$

Изменение параметров одноцепной ВЛ

Одноцепная трехфазная ВЛ

$$x_0 = 0.1445 \lg \frac{D_{ce}}{r_{_{9K}}} + \frac{0.0157}{n}$$

 D_{cz} — среднегеометрическое расстояние между осями соседних фаз (м);


 $r_{_{_{9K}}}$ - радиус эквивалентного провода (м);

$$b_0 = \frac{7,58 \cdot 10^{-6}}{\lg \frac{D_{cz}}{r_{ax}}}$$

$$r_{\mathfrak{I}} = \sqrt[n]{n \cdot \frac{d_{np}}{2} \cdot R_p^{n-1}}$$

$$d_{np}$$
 - диаметр провода (м);

 $R_p \,\,\,\,\,\,\,$ - радиус расщепления (м):

По материалам доклада д.т.н. Виталия Постолати

Конструкция компактной ВЛ:

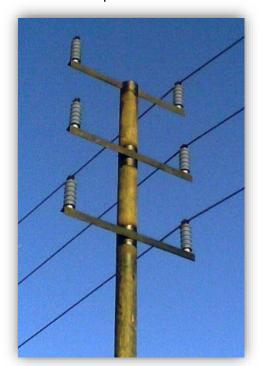
- компактные стойки;
- новые узлы крепления и изоляции;
- новые провода;
- новые решения по молниезащите ВЛ на основе линейных ОПН.

Стойки - стальные многогранные, железобетонные, композитные.

Провода - защищенные изоляцией.

Узлы крепления и изоляции проводов - изолирующие траверсы.

КОМПАКТНЫЕ ВЛ 35 кВ


Конструкция компактных ВЛ 35 кВ

Для ВЛ 35 кВ применение защищенных изоляцией проводов, изолирующих траверс или опорных линейных изоляторов типа ОЛСК уже сегодня обеспечивает возможность строительства ВЛ 35 кВ в габаритах, близких к габаритам ВЛ 10 кВ.

ВЛ 10 кВ с изоляторами ПС 70E

ВЛЗ 35 кВ с полимерными изоляторами ОЛСК-35

Веерные изолирующие траверсы

Консольные изолирующие траверсы

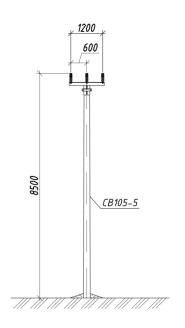
Дорогие опоры

Дешёвый провод

Большая масса устанавливаемых опор

Сложные фундаменты

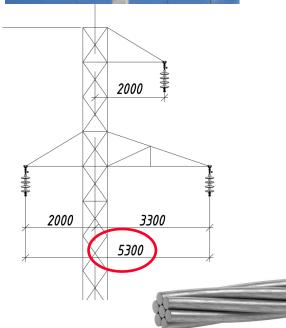
Большой объём общестроительных работ


Не дорогие опоры

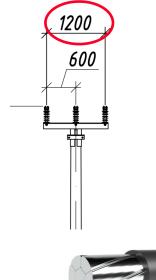
Не дорогой провод

Малая масса устанавливаемых опор

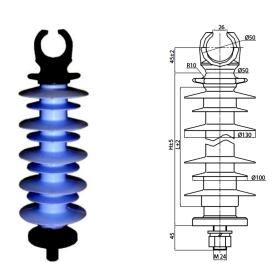
Простые фундаменты

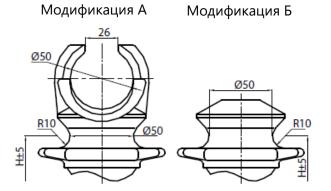

Малый объём общестроительных работ

ВЛ с «голым» проводом (AC) – есть риск схлёстывания проводов и


короткого замыкания

ВЛ с проводом защищённым изоляцией (СИП-3)- риска короткого замыкания при схлёстывании проводов HET



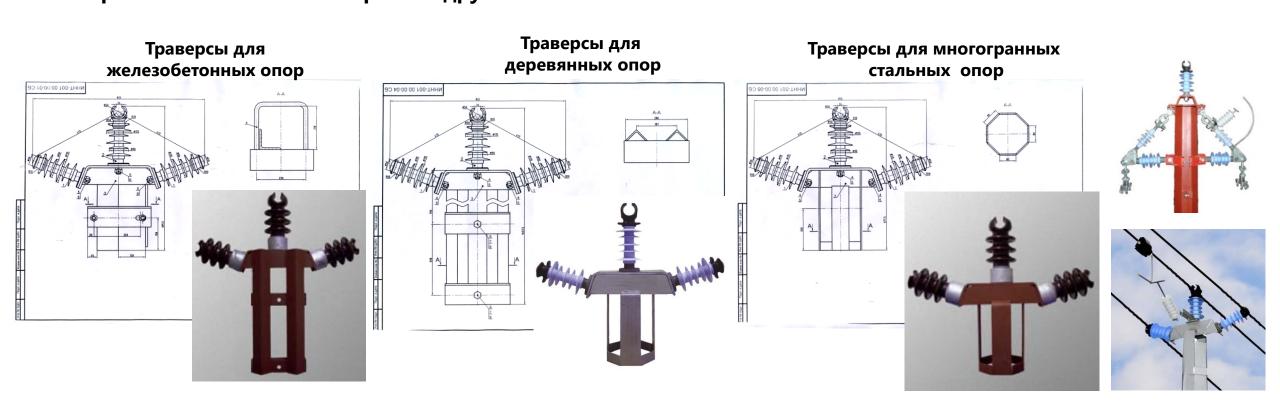


ИЗОЛЯТОРЫ ОПОРНЫЕ ЛИНЕЙНЫЕ НА НАПРЯЖЕНИЕ 35 КВ ТИПА ОЛСК

Варианты модификаций изоляторов по типу присоединения провода

Предназначены для крепления и изоляции неизолированных и защищенных изоляцией проводов типа СИП-3, ПЗВ и ПЗВГ на воздушных линиях электропередачи и РУ электростанций и подстанций переменного тока напряжением 35 кВ частотой до 100 Гц при температуре окружающего воздуха от -60 °C до +50 °C.

Климатическое исполнение и категория размещения УХЛ 1 по ГОСТ 15150.


		ð	цая	кая кении,					ержива ряжені		Гцв ном	R012	я (СЗ)	
	Наименование	Номинальное напряжение,	Нормированная разрушающая сила на изгиб, кН	Нормированная механическая разрушающая сила при растяжении кН,	Строительная высота Н, мм, не более	Изоляционная высота L, мм, не менее	Длина пути утечки, мм, не менее	полного грозового импульса	50 Гц в сухом состоянии	50 Гц под дождем	Разрядное напряжение 50 Г загрязненном и увлажненн состоянии, кВ, не менее	Нормированная удельная поверхностная проводимость загрязнения, мкСм	Допустимая степень загрязнения (СЗ) по ГОСТ 9920	
-	ОЛСК 12,5-35-А(Б)-2				400	240	060	210	165	120		10		-
_	ОЛСК 12,5-35-В-2	25	12.5	10.0	425	340	960	210) 165 120	42	10	II	II	
	ОЛСК 12,5-35-А(Б)-4	35	12,5	10,0	465	425	1150	240	0 180	140	42 -	20	D./	-
	ОЛСК 12,5-35-В-4				490	— 425 90	1150	240				30	IV	

Главным преимуществом изоляторов типа ОЛСК перед изоляторами типа ШФ и ШС является их «непробиваемость» при всех видах электрических воздействий.

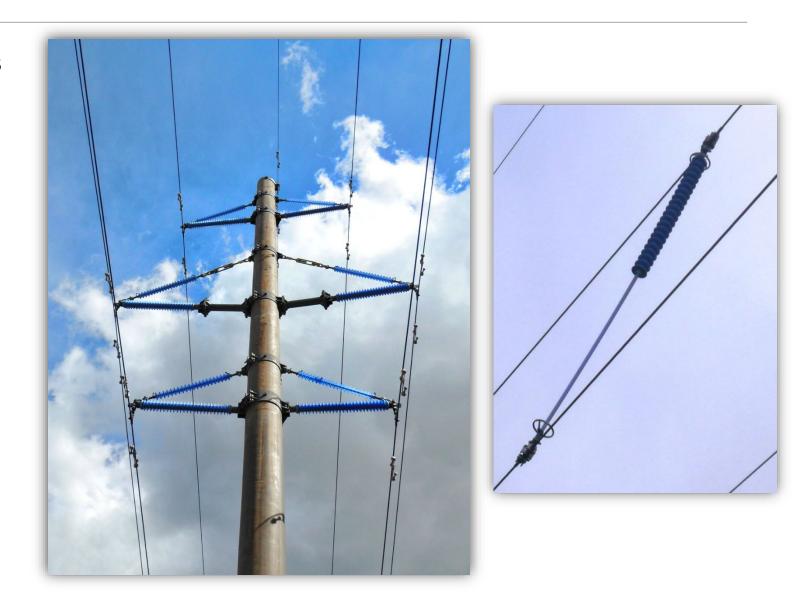
ИЗОЛИРУЮЩИЕ ТРАВЕРСЫ ВЛ 35 кВ

Изолирующие траверсы производства ООО «ИНСТА» (в том числе с элементами грозозащиты) ВЫСОКОЙ ЗАВОДСКОЙ ГОТОВНОСТИ для ВЛЗ 10-35 кВ применяются с 2007 г. на вдольтрассовых линиях электроснабжения ПАО «Газпром» и других ВЛ.

ПРЕИМУЩЕСТВА ПРИМЕНЕНИЯ ИЗОЛИРУЮЩИХ ТРАВЕРС ТИПА ТВИ ПРИ СТРОИТЕЛЬСТВЕ ВЛЗ 35 КВ:

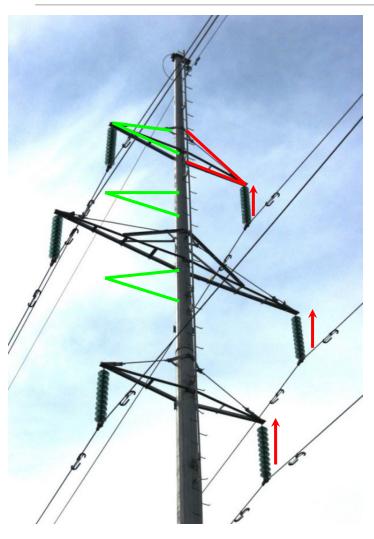
- «непробиваемость» изоляторов в составе ТВИ при всех видах электрических воздействий;
- высокая механическая прочность узла крепления и изоляции проводов на опоре за счет исключения из его конструкции наиболее слабых элементов: штырей и колпачков;
- компактность изделия, удобство транспортировки;
- снижение трудоемкости монтажа ВЛ.

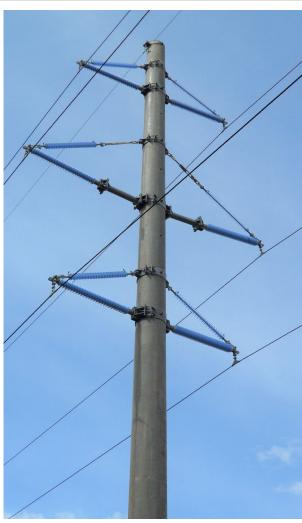
Подробная техническая информация по изолирующим траверсам указана на интернет – сайте ООО «ИНСТА» (www.zaoinsta.ru), раздел «Каталог продукции», подраздел «Изолирующие траверсы», а также предоставляется по запросам.


КОМПАКТНЫЕ ВЛ 110-220 кВ

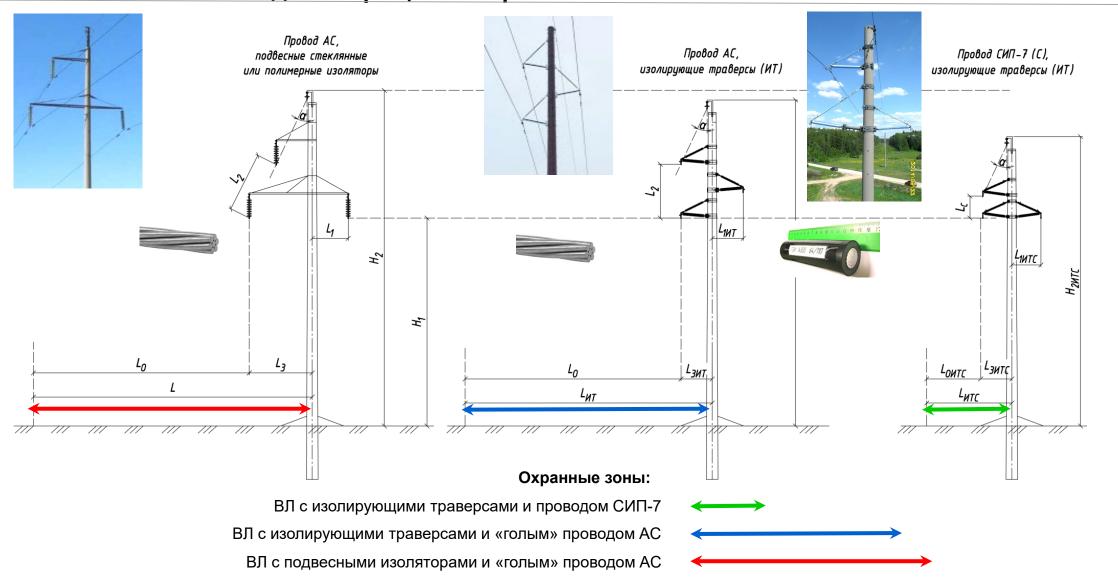
Конструкция компактных ВЛ 110-220 кВ

Для ВЛ 110 кВ и 220 кВ – это компактные стойки, изолирующие траверсы и межфазные изолирующие распорки.


Для ВЛ 110 кВ возможно применение защищенных изоляцией проводов – СИП-7.

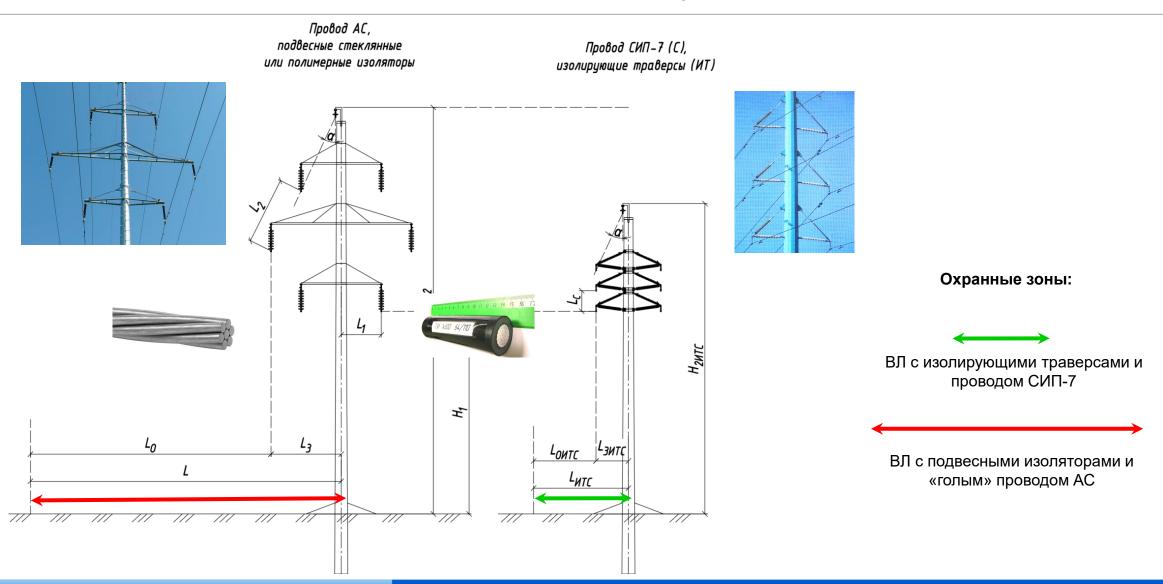

Для ВЛ 220 кВ возможно применение защищенных изоляцией проводов – СИП-8.

ИЗОЛИРУЮЩИЕ ТРАВЕРСЫ ВЛ 110 и 220 кВ

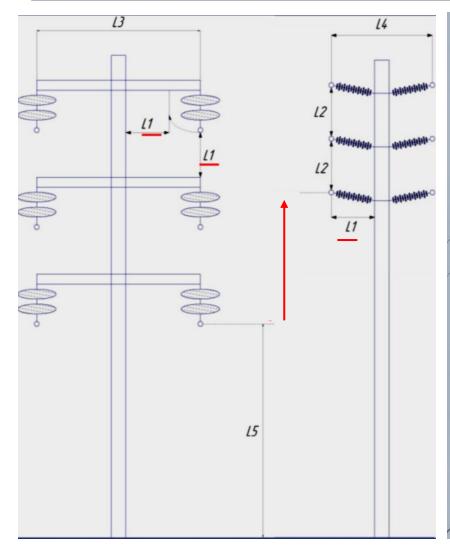


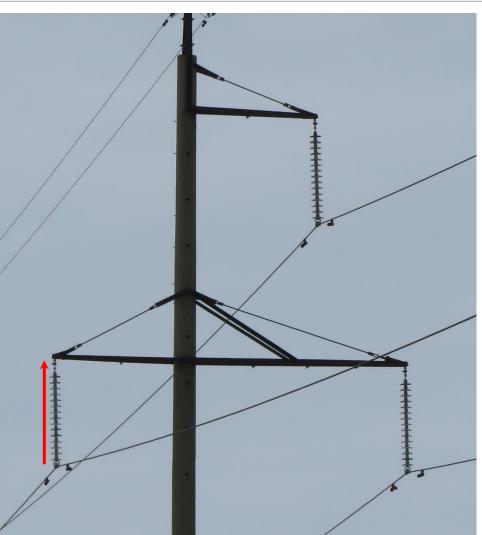
Эффективность изолирующих траверс

Конструктивные преимущества применения изолирующих траверс	Достигаемый эффект
Увеличение высоты подвеса проводов на длину гирлянды	Увеличение длины габаритного пролета и сокращение количества опор ВЛ и как следствие снижение материалоемкости и трудоемкости строительства ВЛ
Уменьшение высоты расположения траверс на опоре	Уменьшение высоты стойки при неизменном габаритном пролете и как следствие снижение материалоемкости ВЛ
Уменьшение межфазных расстояний	Повышение пропускной способности ВЛ и уменьшение полосы отчуждения земли
Применение полимерных изоляторов	Повышение надежности в условиях загрязнения и уменьшение массы опоры



Применение изолирующих траверс и провода СИП-7 для сокращения охранной зоны ВЛ 110 кВ

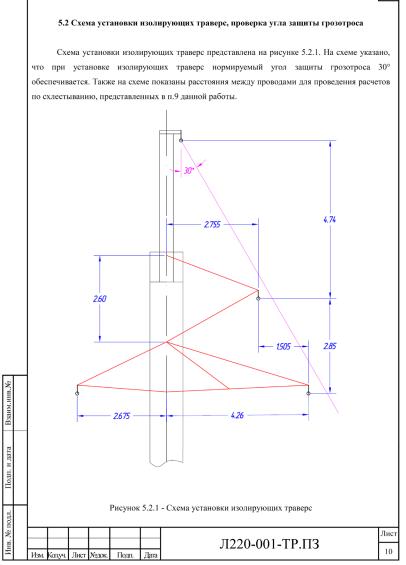



Применение изолирующих траверс и провода СИП-7 для сокращения охранной зоны двухцепных ВЛ 110 кВ

ВОССТАНОВЛЕНИЕ ГАБАРИТОВ ДО ЗЕМЛИ И ПЕРЕСЕКАЕМЫХ СООРУЖЕНИЙ

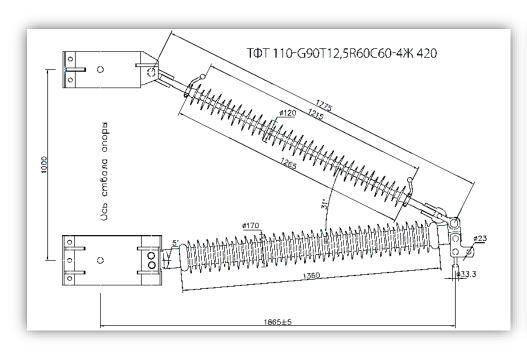
Н.контр.

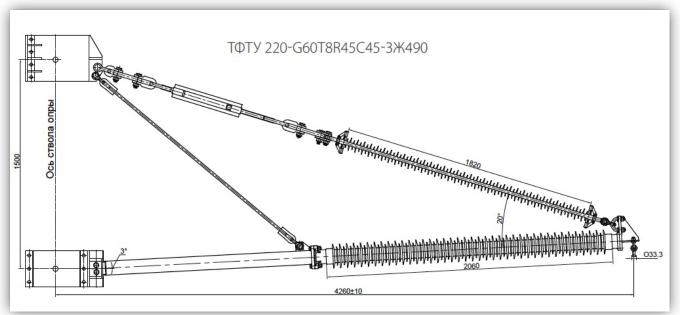
Кайрутдинов



Примеры разработанных рекомендаций по установке изолирующих траверс

Обшие положения Право на выполнение проектных работ ООО «ФОРЭНЕРГО-ИНЖИНИРИНГ» подтверждается выпиской из реестра членов саморегулируемой организации (Приложение А). Основание для разработки технических решений: Письмо заместителя главного инженера по эксплуатации основного оборудования №М2/08/430 от 28.05.2018 г. (Приложение Б). Цель работы: Разработка технических решений на выполнение мероприятий по устранению негабаритов в пролетах опор №№64-65, 90-91 ВЛ 220 кВ путем установки изолирующих траверс производства ООО «ИНСТА». Для определения расположения изолирующих траверс и необходимости выполнения дополнительных мероприятий в данной работе выполнены следующие расчеты: - механический расчет провода; - проверка обеспечения нормируемого угла защиты грозозащитного троса; - расчет габаритов до земли, определение возможности установки изолирующих траверс на опоре с одной стороны пролета; - проверка необходимости использования балластов на смежных опорах, выявление подтягивания поддерживающих гирлянд вверх; - определение минимального расстояния между проводами в пролете, проверка на схлестывание, по допустимым изоляционным расстояниям, по условиям защиты от грозовых перенапряжений, по условиям короны и допустимых уровней радиопомех Л220-001-ТР.ПЗ Лист Модок. Подп. Стадия Лист Разраб. ладков Листов Проверил Пояснительная записка Нач. отд. Сайрутдинов


ФОРЭНЕРГО НЖИНИРИН



ИЗОЛИРУЮЩИЕ ТРАВЕРСЫ ВЛ 110 и 220 кВ

Некоторые варианты изолирующих траверс производства ООО «ИНСТА» для ВЛ 110-220 кВ

Подробная техническая информация по изолирующим траверсам указана на интернет – сайте ООО «ИНСТА» (www.zaoinsta.ru), раздел «Каталог продукции», подраздел «Изолирующие траверсы», а также предоставляется по запросам.

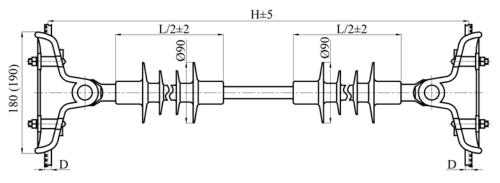
НАДЕЖНОСТЬ ИЗОЛИРУЮЩИХ ТРАВЕРС

Чем обеспечивается надежность современных изолирующих траверс в классах напряжений до 220 кВ?

ООО «ИНСТА» – современное предприятие, специализирующееся на разработке и серийном производстве полимерных высоковольтных изоляторов 3 поколения (повышенной надежности) и изолирующих конструкций для воздушных линий электропередачи и подстанций.

Изоляторы производства ООО «ИНСТА» отличаются:

- наиболее высоким уровнем испытательных и разрядных напряжений;
- заходом цельнолитой кремнийорганической оболочки на оконцеватели, что обеспечивает 100%-ную герметизацию и долговечность изоляторов;
- уникальной технологией изготовления, гарантирующей отсутствие скрытых повреждений стержня после опрессования оконцевателей;
- наилучшей антикоррозийной защитой оконцевателей с использованием технологии термодиффузионного цинкования.


ООО «ИНСТА» – ведущий отечественный производитель полимерных изоляторов самой современной и надежной конструкции.

Предприятием произведено и отгружено потребителям более 10 млн изоляторов на различные классы напряжения и механических нагрузок. Многие изделия были освоены в серийном производстве впервые в России.

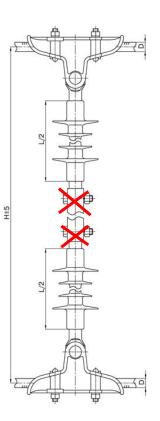
РАСПОРКИ МЕЖФАЗНЫЕ ИЗОЛИРУЮЩИЕ ТИПА РМИД

Предназначены для изолированной фиксации проводов воздушных линий электропередачи. Значительно ограничивают амплитуду колебаний и обеспечивают сохранение необходимых изоляционных расстояний между фазами в критических точках.

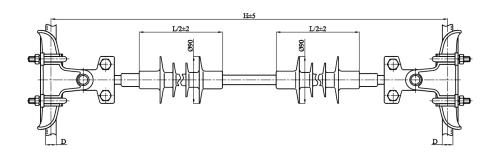
Межфазные изолирующие распорки производства ООО «ИНСТА» отличаются:

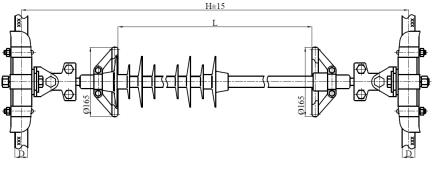
- одномодульной конструкцией (т.е. не имеют металлических вставок), что многократно увеличивает ресурс работы распорок;
- выполнены по технологии изготовления полимерных изоляторов III поколения.

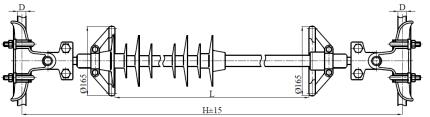
Сравнительные ресурсные испытания распорок РМИ (с жесткой вставкой) и РМИД (цельный стеклопластиковый стержень) на механическую прочность в испытательном центре ООО «ИНСТА».


РМИ выдержала 3 000 циклов РМИД выдержала 20 000 циклов !!!

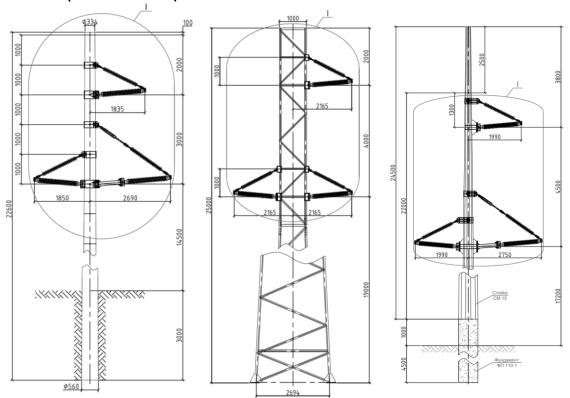
Распорка типа РМИ


Распорка типа РМИД





РАСПОРКИ МЕЖФАЗНЫЕ ИЗОЛИРУЮЩИЕ ПРОИЗВОДСТВА ООО «ИНСТА» ДЛЯ ВЛ 35-220 КВ

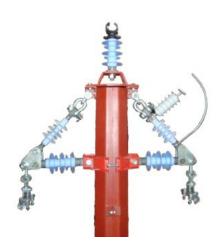

Наименование	Строительная длина, Н, мм**	Изоляционная длина, L, мм	Длина пути тока утечки, мм
РМИД 25/10-Н-П1-4	950-2500	_	730
РМИД 25/20-Н-П1-4	1270-2500	370	1400
РМИД 25/35-H-П1-2	1270-3000	370	1400
РМИД 25/35-Н-П1-4	1450-3000	770	2340
РМИД 30/10-Н-П2(П3)-4	950-2500	-	730
РМИД 30/20-Н-П2(П3)-4	1270-2500	370	1400
РМИД 30/35-Н-П2(П3)-2	1270-3000	370	1400
РМИД 30/35-Н-П2(П3)-4	1450-3000	770	2340

Наименование	Рис.	Минимальная строительная длина, Н**, мм	Минимальная изоляционная длина, L, мм	Длина пути утечки, Ly, мм	
РМИД 60/110-Н-4				5550	
РМИД 60/110-Н-П4-4	1	3200÷6800	2750		
РМИД 100/110-Н-П4-4					
РМИД 30/110-Н-П2-4	2				
РМИД 30/110-Н-П3-4	– 2				
РМИД 60/220-Н-4			4850	11130	
РМИД 60/220-Н-П4-4	1	5300÷6800			
РМИД 100/220-Н-П4-4					
РМИД 30/220-Н-П2-4	2				
РМИД 30/220-Н-П3-4	- 2				


РЕАЛИЗАЦИЯ НИОКР: «ИЗОЛИРУЮЩИЕ ТРАВЕРСЫ ВЛ 110 кВ»

В ходе данной работы были разработаны и успешно прошли испытания изолирующие траверсы для железобетонных, решётчатых и стальных многогранных опор ВЛ 110 кВ.

В настоящий момент изолирующие траверсы для ВЛ 110 кВ производства ООО «ИНСТА» успешно прошли опытную эксплуатацию в: ПАО «МОЭСК», «Нижновэнерго», «Ивэнерго», «Калугаэнерго», «Тулэнерго», МЭС Центра, МЭС Западной Сибири.



ИЗОЛИРУЮЩИЕ ТРАВЕРСЫ. ТЕКУЩАЯ СИТУАЦИЯ В ПРОИЗВОДСТВЕ

Освоены в серийном производстве изолирующие траверсы веерного типа на напряжение 10-35 кВ и консольного типа на напряжение 10-110 кВ.

Разработаны изолирующие траверсы на напряжение 220 кВ. Проведены механические испытания в различных режимах. Организуется опытная эксплуатация траверс. Произведена подготовка производства для серийного выпуска.

Находятся в стадии разработки изолирующие траверсы на напряжение 330 кВ.

БЛАГОДАРЮ ЗА ВНИМАНИЕ!

OOO ПО «Форэнерго» Москва, ул. Лазо, д. 9 https://forenergo.ru/info@forenergo.ru